Two-dimensional quantum spaces corresponding to solutions of the Yang-Baxter equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 242903
(http://iopscience.iop.org/0305-4470/24/13/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:55

Please note that terms and conditions apply.

Two-dimensional quantum spaces corresponding to solutions of the Yang-Baxter equations

Ladislav Hlavatý
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 18040 Prague 8, Czechoslovakia

Received 25 February 1991

Abstract

The quantum spaces given by relation $f(\hat{R})(x \otimes x)=0$, where R are eight- (and less) vertex constant solutions of the Yang-Baxter equations, and their invariance algebras are investigated.

1. Introduction

The supersymmetric spacetimes are Grassman algebras with odd and even elements. Recently new algebras called quantum vector spaces that are ceformations of the Grassman algebras, were introduced into mathematical physics [1]. They are defined as factor algebras of the associative algebra generated by n generators $x_{1}, x_{2}, \ldots, x_{n}$ divided by an ideal corresponding to some relations in $\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{n}\right\rangle$.

A method for constructing Hopf algebras that represents a deformation of classical Lie algebras and some other related structures was also suggested [2]. The principal parameter needed for the construction is a matrix $R=\left\{R_{i j}^{k l}\right\}$ that satisfies the constant Yang-Baxter equations (YBE)

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{1.1}
\end{equation*}
$$

In this paper we are going to deal with quantum spaces given by the following quadratic relationships:

$$
\begin{equation*}
f(\hat{R})_{i j}^{k l} x_{k} x_{l}=0 \quad \text { symbolically } f(\hat{R})(x \otimes x)=0 \tag{1.2}
\end{equation*}
$$

where f is a polynomial function of

$$
\hat{R}:=P R \quad P(x \otimes y):=(y \otimes x)
$$

If R satisfies the YBE then \hat{R} is a representation of the braid group

$$
\begin{equation*}
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12}=\hat{R}_{23} \hat{R}_{12} \hat{R}_{23} \tag{1.3}
\end{equation*}
$$

It is clear that if $\operatorname{det} f(\hat{R}) \neq 0$ then (1.2) implies $x_{i} x_{j}=0$ for all i, j. However, for the zero polynomial there is no relationship. We shall call these two cases trivial quantum spaces and we shall consider only singular non-zero polynomials f.

Let us define the (matrix) algebra A_{R} as a free algebra generated by n^{2} elements $T_{i}^{j}, i, j=1, \ldots, n$, factorized by the following relationships:

$$
\begin{equation*}
\hat{R}_{i j}^{k l} T_{k}^{m} T_{l}^{n}=T_{i}^{k} T_{j}^{l} \hat{R}_{k l}^{m n} \quad \text { or } \quad \hat{R}(T \otimes T)=(T \otimes T) \hat{R} \tag{1.4}
\end{equation*}
$$

The transformations $x_{i}^{\prime}:=T_{i}^{j} x_{j}$ where the T_{i}^{j} satisfy (1.4) then represent homomorphisms of quantum spaces given by (1.2). In other words, the quantum spaces are left comodules of $A_{R}[1,2]$. For these reasons we shall call A_{R} the invariance algebra of all the quantum spaces corresponding to \hat{R}.

The complete list of eight- (and less) vertex constant solutions of the YBE was given in [3]. Later we are going to present non-trivial quantum spaces with $n=2$ that follow from these solutions and their invariance algebras. The numbering of the solutions is identical to that in [3] and q, r, s and t are arbitrary complex constants different from zero. Instead of solutions of the YBE we display here the corresponding braid group representations $\hat{R}=P R$.

As the \hat{R}-matrices we consider are 4×4, they satisfy polynomial equations of maximally fourth order. Therefore we can consider maximally third-degree polynomials in (1.2). Moreover, the minimal polynomials for most of them is a degree less than four. This essentially restricts the number of resulting quantum spaces.

As previously mentioned, all quantum spaces corresponding to a fixed \hat{R} are invariant with respect to

$$
\delta:\binom{x_{1}}{x_{2}} \mapsto\left(\begin{array}{ll}
A & B \tag{1.5}\\
C & D
\end{array}\right) \otimes\binom{x_{1}}{x_{2}}
$$

if A, B, C and D satisfy the quadratic relationships given in (1.4). However, in many cases these relationships can be obtained as necessary conditions for invariance of a set of quantum spaces under (1.5) (cf [1]).

2. List of the quantum spaces

Let us now investigate the explicit forms of the quantum spaces and their invariance algebras.

Case 0 . Let $R_{0}=P$. Then $\hat{R}=1$ and it is self-evident that there are no nonzero polynomials with $\operatorname{det} f(\hat{R})=0$. Thus only trivial quantum spaces exist for this solution. The algebra A_{R} is also trivial in the sense that there are no relationships for A, B, C and D.

Case 1. The matrix \hat{R} that corresponds to the solution R_{1} from [3] is

$$
\hat{R}_{\mathrm{i}}=\left(\begin{array}{cccc}
1 & 0 & 0 & \mathrm{i} \tag{2.1}\\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
\mathrm{i} & 0 & 0 & 1
\end{array}\right)
$$

The minimal polynomial condition for \hat{R}_{1} is (the Hecke condition)

$$
\begin{equation*}
\left(\hat{R}_{1}-1-\mathrm{i}\right)\left(\hat{R}_{1}-1+\mathrm{i}\right)=0 \tag{2.2}
\end{equation*}
$$

and the only singular matrix polynomials (up to regular factors) are projectors

$$
\begin{equation*}
f_{+}=-\mathrm{i}\left(\hat{R}_{1}-1+\mathrm{i}\right) / 2 \quad f_{-}=\mathrm{i}\left(\hat{R}_{1}-1-\mathrm{i}\right) / 2 \tag{2.3}
\end{equation*}
$$

The rank of both of these is two and they define the quadratic relationships

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}=0 \quad x_{1} x_{2}+\mathrm{i} x_{2} x_{1}=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}^{2}-x_{2}^{2}=0 \quad x_{1} x_{2}-\mathrm{i} x_{2} x_{1}=0 \tag{2.5}
\end{equation*}
$$

for the quantum spaces $Q_{+}\left(\hat{R}_{1}\right)$ and $Q_{-}\left(\hat{R}_{1}\right)$, respectively. These spaces, or more explicitly, the relationships (2.4) and (2.5) are invariant with respect to the map (1.5) if and only if A, B, C and D satisfy

$$
\begin{align*}
& A B=-\mathrm{i} D C \quad B A=\mathrm{i} C D \quad A C=\mathrm{i} D B \quad C A=-\mathrm{i} B D \\
& B^{2}=C^{2} \quad A^{2}=D^{2} \quad A D=D A \quad B C=-C B . \tag{2.6}
\end{align*}
$$

These relationships are identical to those for the invariance algebra A_{R} obtained from (1.4) for \hat{R}_{1}.

Case 2.

$$
\hat{R}_{2}=\left(\begin{array}{cccc}
1+t & 0 & 0 & 1 \tag{2.7}\\
0 & 1 & \sqrt{1+t^{2}} & 0 \\
0 & \sqrt{1+t^{2}} & 1 & 0 \\
1 & 0 & 0 & 1-t
\end{array}\right)
$$

(see also [4]). The minimal polynomial condition is

$$
\begin{equation*}
\left(\hat{R}_{2}-1-\sqrt{1+t^{2}}\right)\left(\hat{R}_{2}-1+\sqrt{1+t^{2}}\right)=0 \tag{2.8}
\end{equation*}
$$

The invariance algebra A_{R} is given by the relationships following from (1.4)

$$
\begin{align*}
& C D=\sqrt{1+t^{2}} B A-t A B \quad D C=\sqrt{1+t^{2}} A B-t B A \\
& B D=\sqrt{1+t^{2}} C A-t A C \quad D B=\sqrt{1+t^{2}} A C-t C A \tag{2.9}\\
& B^{2}=C^{2} \quad A^{2}=D^{2}+2 t B^{2} \\
& A D=D A \quad B C=C B .
\end{align*}
$$

Case 2a. $\quad t^{2} \neq-1$. The singular polynomials are projectors

$$
\begin{equation*}
f_{ \pm}= \pm\left(\hat{R}_{2}-1 @ \sqrt{1+t^{2}}\right)\left(1+t^{2}\right)^{-1 / 2} / 2 \tag{2.10}
\end{equation*}
$$

Their rank is 2 and the corresponding quantum spaces $Q_{+}\left(\hat{R}_{2}\right)$ and $Q_{-}\left(\hat{R}_{2}\right)$ are

$$
\begin{equation*}
\left(\sqrt{1+t^{2}}-t\right) x_{1}^{2}=x_{2}^{2} \quad x_{1} x_{2}=x_{2} x_{1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sqrt{1+t^{2}}+t\right) x_{1}^{2}=-x_{2}^{2} \quad x_{1} x_{2}=-x_{2} x_{1} \tag{2.12}
\end{equation*}
$$

respectively. The necessary conditions for the invariance of (2.11) and (2.12) under (1.5) are equivalent to (2.9).

Case 2b. $t^{2}=-1$. Then there is only one singular polynomial $\hat{R}-1$ (up to a regular factor). It is nilpotent, its rank is one and the quantum space is given by the relation

$$
\begin{equation*}
t x_{1}^{2}+x_{2}^{2}=0 \tag{2.13}
\end{equation*}
$$

The conditions for the invariance of (2.13) under (1.5) are weaker than those following from (1.4). Namely, this quantum space is invariant with respect to (1.5) iff

$$
\begin{equation*}
C D=-t A B \quad D C=-t A B \quad A^{2}=D^{2}+t B^{2}+t C^{2} \tag{2.14}
\end{equation*}
$$

Case 9.

$$
\hat{R}_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2.15}\\
0 & 1-t & s t & 0 \\
0 & s & 0 & 0 \\
1 & 0 & 0 & -t
\end{array}\right) \quad s^{2}=1
$$

The minimal polynomial condition for \hat{R}_{3} is

$$
\begin{equation*}
\left(\hat{R}_{3}-1\right)\left(\hat{R}_{3}+t\right)=0 \tag{2.16}
\end{equation*}
$$

The relationships of the algebra A_{R} are

$$
\begin{array}{lcc}
B^{2}=0 & B A=s t A B & B D=-s t D B \\
A^{2}=D^{2}+(1+t) C^{2} & {[A, D]=s(1-t) C B} & B C=t C B \tag{2.17}\\
C A=s A C-D B & C D=A B-s D C . &
\end{array}
$$

Case 3a. $t \neq-1$. The singular polynomials are projectors

$$
\begin{equation*}
f_{+}=\left(\hat{R}_{3}-1\right) /(1+t) \quad f_{-}=\left(\hat{R}_{3}+t\right) /(1+t) \tag{2.18}
\end{equation*}
$$

and the quadratic relationships for the quantum spaces $Q_{+}\left(\hat{R}_{3}\right)$ and $Q_{-}\left(\hat{R}_{3}\right)$ are

$$
\begin{equation*}
x_{1}^{2}=(1+t) x_{2}^{2} \quad x_{1} x_{2}=s x_{2} x_{1} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}^{2}=0 \quad x_{1} x_{2}=-s t x_{2} x_{1} \tag{2.20}
\end{equation*}
$$

respectively. These two quantum spaces, or more explicitly, the relationships (2.19) and (2.20) are invariant with respect to (1.5) if and only if the relationships (2.17) of A_{R} are satisfied.

Case 3b. $t=-1$. There is only one singular polynomial $\hat{R}_{3}-1$ and one quantum space given by

$$
\begin{equation*}
x_{1}^{2}=0 \quad x_{1} x_{2}=s x_{2} x_{1} . \tag{2.21}
\end{equation*}
$$

The invariance transformation conditions of this quantum space are

$$
\begin{equation*}
B^{2}=0 \quad B A=-s A B \quad B D=s D B \quad[B, C]=s[D, A] \tag{2.22}
\end{equation*}
$$

Case 4. This is equivalent to the preceding one because $R_{3}=P R_{4} P$ [3].

Case 5.

$$
\hat{R}_{5}=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \tag{2.23}\\
0 & q-t & q t & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

This is the most investigated case. For $q=1 / t$ one gets the famous $\mathrm{SL}_{q}(2)$, for $q \neq t$ (see [5-8]).

The minimal polynomial condition for \hat{R}_{5} is

$$
\begin{equation*}
(\hat{R}-q)(\hat{R}+t)=0 \tag{2.24}
\end{equation*}
$$

The invariance algebra A_{R} for \hat{R}_{5} is given by

$$
\begin{array}{lccc}
B A=t A B & A C=q C A \quad B D=q D B & D C=t C D \tag{2.25}\\
B C=q t C B & A D-D A=(q-t) C B . &
\end{array}
$$

Case 5a. $q \neq-t$. There are two singular polynomials

$$
\begin{equation*}
f_{+}=-(\hat{R}-q) /(q+t) \quad f_{-}=(\hat{R}+t) /(q+t) \tag{2.26}
\end{equation*}
$$

with ranks 1 and 3. The quadratic relationships for the quantum spaces $Q_{+}\left(\hat{R}_{5}\right)$ and $Q_{-}\left(\hat{R}_{5}\right)$ are

$$
\begin{equation*}
x_{1} x_{2}=q x_{2} x_{1} \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1}^{2}=x_{2}^{2}=0 \quad x_{1} x_{2}=-t x_{2} x_{1} \tag{2.28}
\end{equation*}
$$

respectively. In [1] these quantum spaces are denoted $A_{q}^{(2,0)}$ and $A_{t}^{(0,2)}$. Necessary and sufficient conditions for the invariance of $Q_{ \pm}\left(\hat{R}_{5}\right)$ are identical to (2.25).

Case 5b. $q=-t$. There is only one singular polynomial, $\hat{R}-q$. It is nilpotent and has rank 1. The quantum space is given by (2.27). The sufficient and necessary conditions for the invariance of this quantum space

$$
\begin{equation*}
A C=q C A \quad B D=q D B \quad B C-q^{2} C B=q[D, A] \tag{2.29}
\end{equation*}
$$

are weaker than the conditions for the algebra A_{R}.
Case 6. (See also [9].)

$$
\hat{R}_{6}=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \tag{2.30}\\
0 & q-t & q t & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -t
\end{array}\right) \quad q \neq-t .
$$

The minimal polynomial condition for \hat{R}_{6} and formulae for the singular polynomials are identical to case 5 but both f_{+}and f_{-}have rank 2. The quadratic relationships for the quantum spaces $Q_{+}\left(\hat{R}_{6}\right)$ and $Q_{-}\left(\hat{R}_{6}\right)$ are

$$
\begin{equation*}
x_{1}^{2}=0 \quad x_{1} x_{2}=q x_{2} x_{1} \tag{2,31}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}^{2}=0 \quad x_{1} x_{2}=-t x_{2} x_{1} \tag{2.32}
\end{equation*}
$$

respectively. The algebra A_{R} given by

$$
\begin{array}{ll}
B A=t A B & A C=q C A \quad B D=-t D B \quad D C=-q C D \\
B C=q t C B & A D-D A=(q-t) C B \quad B^{2}=C^{2}=0 \tag{2.33}
\end{array}
$$

also represents the necessary and sufficient conditions for the invariance of $Q_{ \pm}\left(\hat{R}_{6}\right)$ under (1.5).

Case 7.

$$
\hat{R}_{7}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2.34}\\
0 & 0 & s & 0 \\
0 & s & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \quad s^{2}=1
$$

This is one of the most peculiar cases. (We consider solution R_{7} of [3] with $\varepsilon^{\prime}=1$ only because for $\varepsilon^{\prime}=-1 R_{7}$ is equal to R_{3} with $t=1$.)

The matrix \hat{R}_{7} does not satisfy the Hecke condition but its minimal polynomial is of the third degree:

$$
\begin{equation*}
(\hat{R}-1)^{2}(\hat{R}+1)=0 \tag{2.35}
\end{equation*}
$$

There are four singular polynomials and corresponding quantum spaces:

$$
\begin{align*}
& f_{1}=\hat{R}+1 \Rightarrow x_{1}^{2}=0 \quad x_{2}^{2}=0 \quad x_{1} x_{2}=-s x_{2} x_{1} \tag{2.36}\\
& f_{2}=\hat{R}-1 \Rightarrow x_{1}^{2}=0 \quad x_{1} x_{2}=s x_{2} x_{1} \tag{2.37}\\
& f_{3}=f_{1} f_{2}=\hat{R}^{2}-1 \Rightarrow x_{1}^{2}=0 \tag{2.38}\\
& f_{4}=f_{2}^{2}=(\hat{R}-1)^{2} \Rightarrow x_{1} x_{2}=s x_{2} x_{1} . \tag{2.39}
\end{align*}
$$

Only f_{4} is proportional to a projector. The necessary and sufficient conditions for the invariance of the quantum spaces given by (2.36)-(2.39) are

$$
\begin{array}{lcc}
A B=B A=0 & B^{2}=0 & {[A, D]=[B, C]=0} \tag{2.40}\\
A C=s C A & B D=s D B & D C=s C D .
\end{array}
$$

The relationships (1.4) of the algebra A_{R}, moreover, require

$$
\begin{equation*}
A^{2}=D^{2} \quad B D=0 \tag{2.41}
\end{equation*}
$$

Case 8. This corresponds to the diagonal R-matrices:

$$
\hat{R}_{8}=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \tag{2.42}\\
0 & 0 & s & 0 \\
0 & r & 0 & 0 \\
0 & 0 & 0 & t
\end{array}\right)
$$

There are several subcases depending on the values of q, r, s and t.

Case $8 a . \quad q \neq t, q^{2} \neq r s, t^{2} \neq r s$. In this generic case the minimal polynomial for \hat{R}_{8} is given by the characteristic polynomial

$$
\begin{equation*}
(\hat{R}-q)(\hat{R}-t)\left(\hat{R}^{2}-r s\right)=0 \tag{2.43}
\end{equation*}
$$

The singular polynomials are
$f_{1}=(\hat{R}-q) \quad f_{2}=(\hat{R}-t) \quad f_{3}=(\hat{R}+\sqrt{r s}) \quad f_{4}=(\hat{R}-\sqrt{r s})$
and products

$$
f_{i} f_{j} \quad f_{i} f_{j} f_{k} \quad i, j, k=1, \ldots, 4, i \neq j \neq k, i \neq k
$$

The quantum spaces are then obtained by arbitrary combinations of conditions from the set

$$
\begin{equation*}
\left\{x_{1}^{2}=0, x_{2}^{2}=0, \rho x_{1} x_{2}+\tau x_{2} x_{1}=0, \rho x_{1} x_{2}-\tau x_{2} x_{1}=0\right\} \tag{2.45}
\end{equation*}
$$

where $\rho^{2}=r, \tau^{2}=s$. The determining relationships of the invariance algebra for the generic case are

$$
\begin{align*}
& A B=B A=A C=C A=B D=D B=C D=D C=0 \\
& A D=D A \quad r B C=s C B \quad B^{2}=C^{2}=0 . \tag{2.46}
\end{align*}
$$

They define the invariance transformations for all quantum spaces given previously. The relationships can also be obtained as necessary conditions for A_{R} to be a common module for quantum spaces

$$
\begin{align*}
& Q_{1}\left(\hat{R}_{8 \mathrm{a}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(x_{1}^{2}=0\right) \tag{2.47}\\
& Q_{2}\left(\hat{R}_{8 \mathrm{a}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(x_{2}^{2}=0\right) \tag{2.48}\\
& Q_{3}\left(\hat{R}_{8 \mathrm{a}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(\rho x_{1} x_{2}+\tau x_{2} x_{1}=0\right) \tag{2.49}\\
& Q_{4}\left(\hat{R}_{8 \mathrm{a}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(\rho x_{1} x_{2}-\tau x_{2} x_{1}=0\right) . \tag{2.50}
\end{align*}
$$

given by projectors proportional to $f_{i} f_{j} f_{k}$.
Case 8b. $q=t, q^{2} \neq r s$. The minimal polynomial condition is

$$
\begin{equation*}
(\hat{R}-q)\left(\hat{R}^{2}-r s\right)=0 \tag{2.51}
\end{equation*}
$$

The singular polynomials are

$$
\begin{equation*}
f_{1}=(\hat{R}-q) \quad f_{2}=(\hat{R}+\sqrt{r s}) \quad f_{3}=(\hat{R}-\sqrt{r s}) \tag{2.52}
\end{equation*}
$$

and products $f_{1} f_{2}, f_{1} f_{3}$ and $f_{2} f_{3}$. The quantum spaces are obtained by arbitrary combinations of conditions from the set

$$
\begin{equation*}
\left\{x_{1}^{2}=x_{2}^{2}=0, \rho x_{1} x_{2}+\tau x_{2} x_{1}=0, \rho x_{1} x_{2}-\tau x_{2} x_{1}=0\right\} \tag{2.53}
\end{equation*}
$$

The relationships for A_{R}

$$
\begin{align*}
& A B=B A=A C=C A=B D=D B=C D=D C=0 \\
& A D=D A \quad r B C=s C B \tag{2.54}
\end{align*}
$$

are equivalent to the condition that the quantum spaces

$$
\begin{align*}
& Q_{ \pm}\left(\hat{R}_{8 \mathrm{~b}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(\rho x_{1} x_{2} \pm \tau x_{2} x_{1}=0\right) \tag{2.55}\\
& Q_{0}\left(\hat{R}_{8 \mathrm{~b}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(x_{1}^{2}=x_{2}^{2}=0\right) \tag{2.56}
\end{align*}
$$

be invariant under (1.5).

Case 8c. $q \neq t, q^{2} \neq t^{2}=r$. The minimal polynomial condition and the singular polynomials are the same as in the case 8 b . However, the quantum spaces are obtained by combinations of three other conditions, namely those from the set

$$
\begin{equation*}
\left\{x_{1}^{2}=0, x_{2}^{2}=\rho x_{1} x_{2}+\tau x_{2} x_{1}=0, \rho x_{1} x_{2}-\tau x_{2} x_{1}=0\right\} . \tag{2.57}
\end{equation*}
$$

The relationships for A_{R}
$A B=B A=A C=C A=0 \quad r B D=t D B \quad t C D=r D C$
$A D=D A \quad r B C=s C B \quad B^{2}=C^{2}=0$
are equivalent to the condition that the quantum spaces

$$
\begin{align*}
& Q_{1}\left(\hat{R}_{8 \mathrm{c}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(x_{1}^{2}=0\right) \tag{2.59}\\
& Q_{2}\left(\hat{R}_{8 \mathrm{c}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(x_{2}^{2}=\rho x_{1} x_{2}+\tau x_{2} x_{1}=0\right) \tag{2.60}\\
& Q_{3}\left(\hat{R}_{8 \mathrm{c}}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(\rho x_{1} x_{2}-\tau x_{2} x_{1}=0\right) \tag{2.61}
\end{align*}
$$

be invariant under (1.5).
We do not consider cases $q= \pm t, q^{2}=r s$ as they belong to cases 5 a and 6.
Case 9.

$$
\hat{R}_{9}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \tag{2.62}\\
0 & t & 0 & 0 \\
0 & 0 & t & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad t^{2} \neq 1
$$

(The case $t^{2}=1$ is equivalent upto a similarity transformation to the case 5 a .)
The minimal polynomial condition for \hat{R}_{9} is

$$
\begin{equation*}
\left(\hat{R}^{2}-1\right)(\hat{R}-t)=0 \tag{2.63}
\end{equation*}
$$

and the singular polynomials are

$$
\begin{equation*}
f_{1}=(\hat{R}+1) \quad f_{2}=(\hat{R}-1) \quad f_{3}=(\hat{R}-t) \tag{2.64}
\end{equation*}
$$

and products $f_{1} f_{2}, f_{1} f_{3}$ and $f_{2} f_{3}$. The quantum spaces are obtained by combinations of conditions from the set

$$
\begin{equation*}
\left\{x_{1}^{2}+x_{2}^{2}=0, x_{1}^{2}-x_{2}^{2}=0, x_{1} x_{2}=x_{2} x_{1}=0\right\} \tag{2.65}
\end{equation*}
$$

The determining relationships of the algebra A_{R}

$$
\begin{align*}
& A B=B A=A C=C A=B D=D B=C D=D C=0 \\
& B^{2}=C^{2} \quad A^{2}=D^{2} \tag{2.66}
\end{align*}
$$

are necessary and sufficient conditions for invariance of quantum spaces

$$
\begin{align*}
& Q_{ \pm}\left(\hat{R}_{9}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(x_{1}^{2} \pm x_{2}^{2}=0\right) \tag{2.67}\\
& Q_{0}\left(\hat{R}_{9}\right):=\mathbb{C}\left\langle x_{1}, x_{2}\right\rangle /\left(x_{1} x_{2}=x_{2} x_{1}=0\right) \tag{2.68}
\end{align*}
$$

under (1.5). The other quantum spaces obtained from (2.65) are invariant with respect to (1.5) as well.

3. Conclusions

We have investigated the quantum spaces given by the quadratic relationships of the form (1.2) where the matrices \hat{R} correspond to the list of 4×4 constant solutions of the YBE [3] and their invariance algebras.

Due to the eight-vertex form of the solutions of the YBE, the defining relationships for the quantum spaces have the form

$$
\begin{equation*}
\alpha x_{1}^{2}+\beta x_{2}^{2}=0 \tag{3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\gamma x_{1} x_{2}+\delta x_{2} x_{1}=0 \tag{3.2}
\end{equation*}
$$

According to (3.1) we can distinguish 'light-cone' quantum spaces, i.e. spaces such that $\alpha \beta \neq 0$ (e.g. $Q_{ \pm}\left(\hat{R}_{1}\right), Q_{ \pm}\left(\hat{R}_{2}\right), Q_{+}\left(\hat{R}_{3}\right)$ and $Q_{ \pm}\left(\hat{R}_{9}\right)$) and quantum spaces with two, one or none Grassmanian coordinates (e.g. $Q_{ \pm}\left(\hat{R}_{5}\right)$ and $Q_{ \pm}\left(\hat{R}_{6}\right)$).

Most of the solutions of YBE (cases 1-6) presented here satisfy the so-called Hecke condition

$$
\begin{equation*}
\left(\hat{R}-\lambda_{+}\right)\left(\hat{R}-\lambda_{-}\right)=0 \tag{3.3}
\end{equation*}
$$

where $\lambda_{ \pm}$are eigenvalues of \hat{R}. In other words, their minimal polynomials are quadratic. In these cases the only singular polynomials, which define the quantum spaces, are

$$
\begin{equation*}
f_{ \pm}=g_{ \pm}\left(\hat{R}-\lambda_{ \pm}\right) \tag{3.4}
\end{equation*}
$$

where $g_{ \pm}$are arbitrary regular polynomials of \hat{R}.
For $\lambda_{+} \neq \lambda_{-}$we can set $g_{ \pm}= \pm 1 /\left(\lambda_{-}-\lambda_{+}\right)$and due to (3.3)

$$
\begin{equation*}
f_{ \pm}^{2}=f_{ \pm} \quad f_{+} f_{-}=0 \quad f_{+}+f_{-}=1 \tag{3.5}
\end{equation*}
$$

so that the $f_{ \pm}$are projectors that decompose \mathbb{C}^{4} into two orthogonal subspaces. The conditions for the invariance of $Q_{ \pm}(\hat{R})$ under (1.5) are then equivalent to relationships (1.4). Indeed, the requirement that $Q_{ \pm}(\hat{R})$ are invariant with respect to (1.5) and (3.5) yields

$$
\begin{equation*}
f_{+}(T \otimes T) f_{-}=0 \quad f_{-}(T \otimes T) f_{+}=0 \tag{3.6}
\end{equation*}
$$

and from (3.4) and (3.6) we get (1.4).
If $\lambda_{+}=\lambda_{-}$then there is only one singular polynomial (up to a regular factor) so that $Q_{+}(\hat{R})=Q_{-}(\hat{R})$. Conditions for the invariance of this quantum space are then weaker than the relationships defining the algebra A_{R}.

If the minimal polynomial of a matrix \hat{R} is of degree higher than two then there are more than two quantum spaces. The condition that the transformation (1.5) be a homomorphism of all the quantum spaces corresponding to a fixed \hat{R} is not always equivalent to relationships for the matrix algebra A_{R} (case 7). However, it seems that
the equivalence holds in cases when among the singular polynomials $f(\hat{R})$ there are projectors that decompose \mathbb{C}^{4} into a sum of orthogonal subspaces.

Let us finally note that this approach to the (matrix quadratic) algebras A_{R} is slightly different from [1] because in [1] one starts with just one quantum space A and then constructs its dual $A^{!}$and algebras end $(A), e(A, g)$ (for definitions see [1]). Here we work with all the quantum spaces that by virtue of (1.2) correspond to a given R-matrix. The approaches are equivalent if the Hecke condition (3.3) with $\lambda_{+} \neq \lambda_{-}$ holds and

$$
\begin{equation*}
\hat{R}=\hat{R}^{\mathrm{T}} \tag{3.7}
\end{equation*}
$$

which implies $Q_{+}(\hat{R})=Q_{-}(\hat{R})^{\text {! }}$.
The relationship (3.7) is fulfilled for \hat{R}_{2} with any t but in general it imposes restrictions on the R-matrices. For \hat{R}_{5}, \hat{R}_{6} we get $q=1 / t$ (and thus only oneparametric invariance algebras). It is never fulfilled for \hat{R}_{1} and \hat{R}_{3}. If (3.3), $\lambda_{+} \neq \lambda_{-}$ and (3.7) holds then $A_{R}=e\left(Q_{+}(\hat{R}), g\right)=e\left(Q_{-}(\hat{R}), g\right)$.

References

[1] Manin Yu I 1988 Quantum groups and non-commutative geometry (Montreal: CRM, Université Montréal)
[2] Reshetikhin N Yu, Takhtajan L A and Faddeev L D 1989 Algebra i Analiz 1178 (in Russian)
[3] Hlavatý L 1987 J. Phys. A: Math. Gen. 201661
[4] Ge M-L, Gwa L-H and Zhao H-K 1990 J. Phys. A: Math. Gen. 23 L795
[5] Kulish P P 1990 Zapiski LOMI 18089 (in Russian)
[6] Sudbery A 1990 J. Phys. A: Math. Gen. 23 L697
[7] Schirrmacher Á, Wess J and Zumino B 1991 Z. Phys. © 49317
[8] Burdik C and Hlavatý L 1991 J. Phys. A: Math. Gen. 24 L165
[9] Bednář M, Burdík Č, Hlavatý L and Levinský R 1991 On quantum algebras related to the fermionic algebras Preprint

