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Two-dimensional quantum spaces corresponding to 
solutions of the Yang-Baxter equations 
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Institute of Physics, Csechoslovak Academy of Sciences, Na Slovance 2, 180 40 Prague 
8, Czechoslovakia 

Received 25 February 1991 

Abstract. The quantum spaces given by relation j (A ) (=  @ z) = 0, where R are 
eight- (and less) vertex constant solutions of the Yang-Baxter equations, and their 
invariance algebras are investigated. 

1. Introduction 

The supersymmetric spacetimes are Grassman algebras with odd and even elements. 
Recently new algebras called quantum vector spaces that are ieformations of the 
Grassman algebras, were introduced into mathematical physics [l]. They are defined 
as factor algebras of the associative algebra generated by n generators zI, z2,. . . , z, 
divided by an ideal corresponding to some relations in C!(zl, z2,.  . . , z,).' 

A method for constructing Hopf algebras that represents a deformation of classical 
Lie algebras and some other related structures was also suggested [2]. The principal 
parameter needed for the construction is a matrix R = { Rk'} that satisfies the constant 
Yang-Baxter equations (YBE) 

R12R13R23 = R23R13R12' (1.1) 

In this paper we are going to deal with quantum spaces given by the following 
quadratic relationships: 

f ( k ) t z k z ,  = 0 symbolically f ( k ) ( z  8 z) = 0 (1.2) 

where f is a polynomial function of 

k := P R  P ( z  @ y) := (Y @ z). 

if R satisfies the YBE then R is a representation of the braid group 

R12R23R,2 = R23R12k23. (1.3) 

I t  is clear that  if detf(R) # 0 then (1.2) implies zizj = 0 for all i , j .  However, 
for the zero polynomial there is no relationship. We shall call these two cases t r iv ia l  
quantum spaces and we shall consider only singular non-zero polynomials f. 
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Let us define the (matrix) algebra A, as a free algebra generated by n2 elements e ,  i ,  j = I , .  . . , n, factorized by the following relationships: 

Rk!T"'T *J k = qkT!R;" 01 R(T B T )  = (T 8 T ) R .  (1.4) 

The transformations z: := K'zj where the "/ satisfy (1.4) then represent homomor- 
phisms of quantum spaces given by (1.2). In other words, the quantum spaces are left 
comoduks of A ,  [I, 2;. For these reasons we shaii caii A, the invariance aigebra of 
all the quantum spaces corresponding to R. 

The complete list of eight- (and less) vertex constant solutions of the YBE was 
given in [3]. Later we are going t o  present non-trivial quantum spaces with n = 2 
that follow from these solutions and their invariance algebras. The numbering of the 
solutions is identical to that in [3] and q ,  r,6 and t are arbitrary complex constants 
different from zero. Instead of solutions of the YBE we display here the corresponding 
braid group representations R = PR. 

As the R-matrices we consider are 4 %  4, they satisfy polynomialequations of maxi- 
mally fourth order. Therefore we can consider maximally third-degree polynomials in 
(12) .  Moreover, the minimal polynomials for most of them is a degree less than four. 
This essentially restricts the number of resulting quantum spaces. 

As previously mentioned, all quantum spaces corresponding to a fixed R are in- 
variant with respect to 

if A ,  B, C and D satisfy the quadratic relationships given in (1.4). However, in many 
cases these relationships can be obtained as necessary conditions for invariance of a 
set of quantum spaces under (1.5) (cf [I]). 

2. Lis t  of the quantum spaces 

Let us now investigate the explicit forms of the quantum spaces and their invariance 
algebras. 

Case 0. Let R, = P.  Then R = 1 and it  is self-evident that there are no non- 
zero polynomials with det f(R) = 0. Thus only trivial quantum spaces exist for this 
solution. The algebra A ,  is also trivial in the sense that there are no relationships for 
A ,  B ,  C and D. 

Case 1. The matrix R that corresponds to the solution R, from [3] is 

/ I  0 0 i \  

The minimal polynomial condition for R1 is (the Hecke condition) 

(A, - 1 -i)(A1 - 1 + i )  = O 
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and the only singular matrix polynomials (up to regular factors) are projectors 

ft = -i(Rl - 1 + i)/2 (2.3) 

z t  + = o zlzz + izzzl = o (2.4) 

zf - = 0 zlz2 - izzzl = o (2.5) 

j -  = i(R, - 1 - i)/2. 

The rank of both of these is two and they define the quadratic relationships 

and 

for the quantum spaces &+(RI) and Q-(&) ,  respectively. These spaces, or more 
explicitly, the relationships (2.4) and (2.5) are invariant with respect to the map (1.5) 
if and only if A, B ,  C and D satisfy 

A B  = -iDG BA = iCD AC = i D B  CA = -iBD 

Ba = C2 A’ = Dz AD = DA BC = -CB. 

These relationships are identical to those for the invariance algebra A, obtained from 
(1.4) for I?,. 

Caee 2: 

(2.6) 

(see also [4]). The minimal polynomial condition is 

(R2 - 1 - diZ)(R2 -1+ m) = 0. 

The invariance algebra A, is given by the relationships following from (1.4) 

C D  = m B A  - tAB 

BD = -CA - tAC 

B2 = C2 

A D  = DA 

DC = G A B  - tBA 

D B  = m A C  - tCA 
(2.9) 

A’ = D2 + 2tB2 

BC = CB. 

t 2  # -1. The singular polynomials are projectors Case 25. 

j* = *(R2 - 1 dGF)(l+ t2)-’/2/2. 

(m- t).; = 2; ZIZZ = Z2Z1 (2.11) 

( d i s + t ) z :  = -2: ZIZZ = -z2z1 (2.12) 

(2.10) 

Their rank is 2 and the corresponding quantum spaces Qt(Rz) and Q - ( R 2 )  are 

2nd 

respectively. The necessary conditions for the invariance of (2.11) and (2.12) under 
(1.5) are equivalent to (2.9). 
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Case Zb. tZ = -1. Then there is only one singular polynomial R- 1 (up to a regular 
factor). It is nilpotent, its rank is one and the quantum space is given by the relation 

(2.13) 

The conditions for the invariance of (2.13) under (1.5) are weaker than those 
following from (1.4). Namely, this quantum space is invariant with respect to (1.5) iff 

tz: + 2; = 0. 

CD = -tAB -- nr: = -tp.g ._ A2 = 9 2  + !_RZ $ !CZ. (2.14) 

Case 3. 

0 0 0  

Iz,= (; l i t  !t) s 2 = 1 .  (2.15) 

The minimal polynomial condition for R3 is 

(R3 - 1)(R3 + t )  = 0. (2.16) 

The relationships of the algebra A,  are 

B 2 = 0  B A = s t A B  B D  = -stDB B C  = tCB 

A’ = Dz + (1 + t)CZ [A, D] = s(1- t )CB (2.17) 

C A =  SAC - DB CD = A B  - sDC 

Case 9a. t $ -1. The singular polynomials are projectors 

.f+ = (k3 - 1)/(1 + t) f- = (k3 + t ) / ( l +  t )  (2.18) 

and the quadratic relationships for the quantum spaces Q+(R3)  and Q-(k3) are 

2: = (1 +t)z; Z1ZZ = SZZZl (2.19) 

and 

2: = 0 Z I Z Z  = -stzz2, (2.20) 

respectively. These two quantum spaces, or more explicitly, the relationships (2.19) 
and (2.20) are invariant with respect to (1.5) if and only if the relationships (2.17) of 
A, are satisfied. 

Case 9b. 
space given by 

t = -1. There is only one singular polynomial R3 - 1 and one quantum 

2; = 0 2 , Z a  = SZZ2,.  (2.21) 

BZ = 0 BA = -sAB BD = sDB [B ,  C] = s [D,  A] .  (2.22) 

The invariance transformation conditions of this quantum space are 

Case 4. This is equivalent to the preceding one because R3 = PR,P [3] 
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Case 5. 

(2.23) 

This is the most investigated case. For q = l / t  one gets the famous SL,(2), for q # t 
(see [5-81). 

The minimal polynomial condition for R, is 

( R - q ) ( R + t ) = O .  (2.24) 

The invariance algebra A, for R5 is given by 

BA = tAB AC = qCA BD = qDB DC = tCD 

BC = qtCB 
(2.25) 

AD - DA = (q  - t)CB. 

Case 5a. q # -t. There are two singular polynomials 

f+ = -(R - d/ (n  + t )  f- = ( R  + t ) / (n  + t )  (2.26) 

with ranks 1 and 3. The quadratic relationships for the quantum spaces Q + ( R 5 )  and 
Q-(R,)  are 

2 1 1 2  = qz2=1 (2.27) 

and 

z2 l - z 2 = o  - 2 z1z2 = - tz2z1 (2 .28 )  

Necessary respectively. In [l] these quantum spaces are denoted AY") and 
and sufficient conditions for the invariance of &*(R,) are identical to (2.25). 

Case 56. q = --t. There is only one singular polynomial, R - q.  It is nilpotent 
and has rank 1 .  The quantum space is given by (2.27). The sufficient and necessary 
conditions for the invariance of this quantum space 

AC = qCA B D  = qDB BC - q2CB = q[D, A] (2.29) 

are weaker than the conditions for the algebra A,. 

Case 6. (See also [9].) 
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The minimal polynomial condition for Rs and formulae for the singular polynomials 
are identical to case 5 but both f+ and f- have rank 2. The quadratic relationships 
for the quantum spaces Q+(Rs) and Q-(R6) are 

2: = 0 Z l I 2  = gz2z1 (2.31) 

and 
2; = 0 Z1Z2 = -tz,z, (2.32) 

respectively. The algebra A,  given by 
B A  = tAB AC = gCA BD = -tDB DC = -qCD 

(2.33) 
BC = gtCB 

also represents the necessary and sufficient conditions for the invariance of Q+(R,)  
under (i  5) .  

Case 7. 

AD - D A  = ( g  - t )CB B2 = C2 = 0 

1 0 0 0  

R , = ( O  o s 0 0  O 0) s2 = 1. 

1 0 0 1  

(2.34) 

This is one of the most peculiar cases. (We consider solution R, of [3] with E' = 1 
only because for E' = -1 R, is equal to R, with 1 = 1.) 

The matrix A, does not satisfy the Hecke condition but its minimal polynomial is 
of the third degree: 

(a ~ ? ) 2 ( 8  + 1) = 0. (2.35) 

There are four singular polynomials and corresponding quantum spaces: 

fl  = R + 1 j 2: = 0 

fz = R - 1 * 2; = 0 

f, = j I j 2  = R 2  - 1 e. 2: = 0 

f4 = j; = (R - 1)2 j Z1ZZ = SZ2Z1 .  

2; = 0 

Z1Z2 = sz2z1 

Z1ZZ = --5z2z1 (2.36) 

(2.37) 

(2.38) 

(2.39) 

Only f4 is proportional to a projector. The necessary and sufficient conditions for the 
invariance of the quantum spaces given by (2.36)-(2.39) are 

A B = B A = O  B2 = 0 [A,  D] = [B,  C] = 0 
(2.40) 

AC = sCA B D  = sDB DC = sCD. 
The relationships (1.4) of the algebra A,, moreover, require 

A 2 = D 2  BD=O. 

Case 8. This corresponds to the diagonal R-matrices: 
/,I 0 0 o \  

(2.41) 

(2.42) 

There are several subcases depending on the values of g, r, s and t .  
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q # t ,  q2 # rs, t 2  # rs. In this generic case the minimal polynomial for R a  

(2.43) 

Case 8a. 
is given by the characteristic polynomial 

(R - q ) ( R  - t ) ( R 2  - rs) = 0. 

The singular polynomials are 

fl = ( R  - n )  f2 = ( R  - t )  f, = ( R +  6) f4 = ( R  - 6) (2.44) 
and products 

fifj fifjfk i , j , k = l ,  ..., 4, i # j # k ,  i # k .  
The quantum spaces are then obtained by arbitrary combinations of conditions from 
the set 

12: = 0, 2; = 0, p q 2 2  + T 2 2 2 1  = 0, P"l"2 - 7 2 2 2 1  = 0) (2.45) 

where p2 = r, rz = s. The determining relationships of the invariance algebra for the 
generic case are 

AB = B A  = AC = C A  = BD = DB = CD = DC= 0 

AD = DA 
(2.46) 

They define the invariance transformations for all quantum spaces given previously. 
The relationships can also be obtained as necessary conditions for A, to be a common 
module for quantum spaces 

(2.47) 

(2.48) 

rBC = sCB B2  = C2 = 0. 

Q1(& := @("I, .J/(z? = 0) 

Qz(RSJ := @("la ~ 2 ) / ( 2 ;  = 0) 

(2.49) 

(2.50) 

Case 86. q = t ,  q2  # rs. The minimal polynomial condition is 

( R  - q ) ( 2  - rs) = 0. (2.51) 

The singular polynomials are 

h = (R - n )  f2 = (a+&) f 3 = ( R - 6 )  (2.52) 

and products f l f2 ,  flf, and f2f,. The quantum spaces are obtained by arbitrary 
combinations of conditions from the set 

(2.53) {zy = = 0, p 1 z 2  + rz2z1 = 0, pz lz2  - rz2z1 = 0). 

The relationships for A, 
AB = B A  = AC = C A  = BD = DB = CD = DC= 0 

AD = DA 
(2.54) 

TBC = sCB 
are equivalent to the condition that the quantum spaces 

Q*(JL) := @ ( 2 1 , 2 2 ) / ( ~ 2 1 2 2  * 7 2 2 ~ 1  0) (2.55) 

Qo(&,) := C ( z l , z 2 ) / ( z ~  = 2;  = 0) (2 .56)  

be invariant under (1.5). 
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Case 8c. q # t ,  q2 # t 2  = rs. The minimal polynomial condition and the singular 
polynomials are the same as in the case 8b. However, the quantum spaces are obtained 
by combinations of three other conditions, namely those from the set 

{ z ;  = 0, 2; = pz1z2 + r2p1 = 0, pz1zz - m 2 2 1  = 0). (2.57) 

The relationships for A ,  

A B  = BA = AC = C A  = 0 

A D =  DA rBC = sCB 8’ = C2 = 0 

rBD = tDB tCD = rDC 
(2.58) 

are equivalent to the condition that  the quantum spaces 

0 0 0 1  q0 O t O O  0 o) t 2 # l  

1 0 0 0  

(2.62) 

(The case t 2  = 1 is equivalent upto a similarity transformation to the case 5a.) 
The minimal polynomial condition for Rg is 

( R 2  - l ) ( R -  t) = 0 

and the singular polynomials are 

(2.63) 

fl = ( R + 1 )  fi = ( R -  1) f3 = (8- t )  (2.64) 

and products f l f2 ,  flf3 and f2f3.  The quantum spaces are obtained by combinations 
of conditions from the set 

{ Z t  + 2; = 0, 2: - 2; = 0, Z1Z2 = ZZZl = 0). (2.65) 

The determining relationships of the algebra A ,  

AB = BA = A C =  C A  = B D =  D B  =CD = DC= 0 

B2 =C2 A ’ =  D 2  
(2.66) 

are necessary and sufficient conditions for invariance of quantum spaces 

Q*(R,)  := @(z,,z,)/(zi * 2; = 0) 

Q o ( 8 9 )  := @(z1,x2)/(21+2 = 2.221 = 0) 

(2.67) 

(2.68) 

under (1.5). The other quantum spaces obtained from (2.65) are invariant with respect 
to (1.5) as well. 
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3. Conclusions 

We have investigated the quantum spaces given by the quadratic relationships of the 
form (1.2) where the matrices I? correspond t o  the list of 4 x 4 constant solutions of 
the YBE [3] and their invariance algebras. 

Due to the eight-vertex form of the solutions of the YBE, the defining relationships 
for the quantum spaces have the form 

oz;+pz:  = 0 (3.1) 

or 

yz,z, + 62p1 = 0 ( 3 4  

According to  (3.1) we can distinguish ‘light-cone’ quantum spaces, i.e. spaces such 
that op # 0 (e.g. &+(A1), Q+(R,), Qt(& and Q+(&)) and quantum spaces with 
two, one or none Grassmanian coordinates (e.g. &+(R,) and Q+(R8)). 

Most of the solutions of YBE (cases 1-6) presented here satisfy the so-called Hecke 
condition 

( R  - A + ) ( R  - A-) = 0 (3.3) 

where A *  are eigenvalues of R. In other words, their minimal polynomials are 
quadratic. In these cases the only singular polynomials, which define the quantum 
spaces, are 

f* = g*@- A,) (3.4) 

where g* are arbitrary regular polynomials of R. 
For A+ # A- we can set gf = f l / ( A -  - A,) and due to (3.3) 

f: = f* f+f- = 0 f+ + f- = 1 (3.5) 

so that the f* are projectors that decompose C4 into two orthogonal subspaces. The 
conditions for the invariance of Q*(R) under (1.5) are then equivalent to relationships 
(1.4). Indeed, the requirement that Qf(R) are invariant with respect t o  (1.5) and (3.5) 
yields 

ft(T @ T)f- = 0 f- (T 8 T)ft = 0 (3.6) 

and from (3.4) and (3.6) we get (1.4). 
If A+ = A- then there is only one singular polynomial (up to a regular factor) so 

that Q,(R) = Q-(k) .  Conditions for the invariance of this quantum space are then 
weaker than the relationships defining the algebra A,. 

If the minimal polynomial of a matrix R is of degree higher than two then there 
are more than two quantum spaces. The condition that the transformation (1.5) be 
a homomorphism of all the quantum spaces corresponding to a fixed R is not always 
equivalent to relationships for the matrix algebra A, (case 7). However, it seems that 
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the equivalence holds in cases when among the singular polynomials f (R) there are 
projectors that decompose C4 into a sum of orthogonal subspaces. 

Let us finally note that this approach to the (matrix quadratic) algebras A ,  is 
slightly different from [l] because in [l] one starts with just one quantum space A and 
then constructs its dual A! and algebras end(A), e ( A , g )  (for definitions see [l]). Here 
we work with all the quantum spaces that by virtue of (1.2) correspond to a given 
R-matrix. The approaches are equivalent if the Hecke condition (3.3) with A, # A- 
holds and 

R =  RT (3.7) 

which implies Q+(R) = Q-(k)!. 
The relationship (3.7) is fulfilled for R2 with any t but in general i t  imposes 

restrictions on the R-matrices. For R,, R6 we get p = l / t  (and thus only one- 
parametric invariance algebras). I t  is never fulfilled for RI and 8,. If (3.3), A, # A- 
and (3.7) holds then A ,  = e(Q+(k),g) = e(Q-(k),g). 
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